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1. Introduction 

The apparatus described herein was designed and constructed as an aid to the electromechanical 

characterization of composited soft elastomeric materials subjected to large biaxial deformations.   

The basic function of the apparatus was inspired by an experiment on pure homogeneous 

deformation of rubber sheets first described by Treloar (Treloar, 1948) and later modified by 

Rivlin and Saunders (Rivlin and Saunders, 1997).  The U.S. Army Research Laboratory is 

interested in these elastomers as either dielectric or conducting layers in composited stretchable 

electromechanical transduction mechanisms.  Such composited devices are of interest for 

actuation and sensing applications in highly compliant survivable systems, such as compliant 

robotics, stretchable electronic devices, clothing-integrated electronics, Soldier biosensing, and 

stretchable adaptive antennas.  Whereas most material characterizations are performed under 

uniaxial strain conditions, such tests are not suitable for some emerging applications of potential 

interest to the Army and Department of Defense—notably, clothing-integrated distributed 

electronic devices and large-area distributed actuator systems for biologically inspired robotic 

mobility.  In both cases, real-world scenarios dictate that experimentation, modeling, and 

analysis are more accurate if biaxial stress-strain conditions are considered.  Of particular 

concern are reliability and failure analyses.  Uniaxial stress-strain conditions simply cannot 

create stress conditions arising from multiaxial loads that can lead to earlier failures—in 

particular, at anisotropic material-material interfaces.  Thus, a means of producing biaxial strain 

and stress in a reliable and repeatable way for research purposes was identified as a requirement 

in order to evaluate emerging stretchable electronics technologies for potential future Army 

applications. 

Electronic properties, such as dielectric strength, capacitance, resistance, and inductance, vary 

significantly and nonlinearly when stretchable electronic devices are subjected to large 

deformations (Jean-Mistral et al., 2010; Slipher et al., 2012).  Shifts in dielectric strength and 

resistance are primarily determined by inherent bulk material properties, including 

microstructure, while shifts in inductance and capacitance are primarily influenced by changes in 

device geometry during deformation.  Large deformations result in changes in both the material 

microstructure and the bulk material geometry, thus leading to complex shifts in electrical and 

mechanical impedances.  Figure 1 shows a representative data set that illustrates the significance 

of shift in electronic behavior with strain for a stretchable capacitor.  For example, note the initial 

increase in capacitance that would be expected for a parallel plate capacitor as the area increases 

and the dielectric thickness decreases.  The resulting change in slope, and then decrease in 

capacitance, is associated with reaching and then passing the percolation threshold for a localized 

resistive component as strain is increased.  This change reduces the effective area of the 

capacitor, and thus reduces capacitance, as the charge mobility is eliminated over an increasingly 

significant area of the capacitor.
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Figure 1.  Representative data showing significant nonlinear shifts in 

electronic properties of a device undergoing large deformation (in 

this case, equi-biaxial area strain).     

Note:  The “flexible” electronics and “stretchable” electronics regimes are called out 

for contextualization and comparison. 

Understanding the variation in electronic and mechanical properties with strain is important for 

both exploitation of such variation (e.g., for sensing applications) and mitigation of, or 

adaptation to, the variation for effective operation of stretchable electronic devices.  For 

example, impedance matching is critical for designing efficient driving circuitry for AC-driven 

stretchable actuator systems.  However, as the total impedance of the stretchable device changes, 

the driving circuitry needs to adapt to maintain the same level of efficiency.  It is thus important 

to understand the degree of shift in impedance for a given device over its operating range of 

frequency and deformation in order to design efficient driving circuitry for it.   

Determining the constitutive electronic properties of the material system, in addition to the 

mechanical properties, is thus a prerequisite for designing highly compliant electronic devices 

(e.g., highly deformable muscle-like actuators for biologically inspired robotic mobility).  The 

apparatus described herein allows scientists to perform additional experiments to determine the  

constitutive electronic and mechanical properties of a variety of stretchable electronic materials 

over a wide range of equi-biaxial strains. 

2. Design 

The apparatus was designed to give the user a wide range of equi-biaxial straining capability 

while maintaining repeatability, ease of use, and the ability to remove the sample, if desired, to 

carry out additional experiments without losing the strained reference state.  In anticipation that 

the apparatus would be used to prepare hundreds of samples, we designed the apparatus for 
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speed, efficiency of operation, and ease of use.  In its final form, the apparatus is operated via 

computer to allow precise closed-loop control over the desired strain state.  We achieved 

precision by using combination micro-stepping stepper motors, precision ground steel acme 

threaded rods, and a small clamp head advance ratio of ~0.3 μm per motor step (2.899E-7 m) 

with micro-stepping enabled on the motor driver.  Without micro-stepping enabled, the advance 

ratio is ~2.9 μm of linear extension of the clamp head per step. 

2.1 Basic Operational Concept 

The user operates the apparatus by rotating a circular gear track, which simultaneously spins 16 

radially aligned spur gear heads.  Each spur gear head is coaxially fixed to precision steel 

acme-threaded rods via a matched precision threaded nut.  Sixteen clamping heads are fixed to 

the inner end of each threaded rod.  Clamping heads are used to clamp the outer edge of the 

membrane that is to be deformed.  As the spur gears are spun by the action of rotating the gear 

track, the threaded rods are advanced radially relative to the clamp heads via the nut.  The 

geometry of the clamp heads restricts the minimum starting radius of the sample.  The geometry 

of the supporting fixture restricts the maximum displacement that can be achieved by the clamp 

heads.  The interplay between these two restrictions is the primary design consideration requiring 

careful selection of apparatus and component geometry in order to achieve a desired range of 

strain.  Figures 2–4 illustrate the basic form and operation of the apparatus.  Figure 2 shows the 

basic functional components:  the gear track, spur gears, threaded rods, and the clamp heads that 

grip the sample to be strained.  Figure 3 shows the rotation of the gear track to advance the clamp 

heads radially outward and increase strain on the specimen.  Figure 4 shows the corresponding 

spur gear rotation and clamp head displacement at maximum strain. 

 

Figure 2.  Basic apparatus components.
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Figure 3.  Gear track motion for increasing strain (shown at minimum stain, 

starting position). 

 

 

Figure 4.  Spur gear rotation for increasing strain and corresponding clamp 

head displacement (shown at maximum strain). 

We have achieved a large range for applied strain (greater than 625% change in area) in the 

apparatus as-built.  The choice of sample starting radius determines both the maximum 

achievable strain and the resolution at with which the strain can be applied.  The larger the strain 

range, the lower the resolution.  For this reason, the starting radius for the sample must be 

carefully considered.  The mathematical relationship between range and accuracy of the applied 

strain is described later in this section of this report.   

We determined that the relatively compact apparatus needed 16 clamp heads.  The number 16 

was determined empirically to be the minimum number required to avoid too great an influence 

of Poisson’s effect on the deformed membrane shape under high-strain conditions.  The number 

of clamp heads that is practical to implement is limited by the surrounding structural geometry.  
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Thus, the number of clamp heads represents a compromise between strain uniformity and utility 

of operation.  Saint-Venant’s principle tells us that given a sufficient distance away from a 

nonuniform boundary condition, the effect of the nonuniformity becomes negligible and 

disappears in the material state (Love, 1927; Von Mises, 1945; Saint-Venant, 1855).  Adequate 

uniformity of the prestrain condition is thus achieved by limiting the region of interest of the 

prestrained membrane to a fraction of the overall radius of the membrane.  The images in figure 

5 compare Poisson’s effect with 8 and 16 clamp heads.  The range and uniformity of the strain 

condition are further discussed in section 3 of this report. 

 

 

Figure 5.  Comparison of Poisson’s effect for eight clamp heads (left) and sixteen clamp heads (right). 

The apparatus geometry and the related performance capabilities are calculated using the 

following mathematical relations.  The desired strain (ε) is defined as the area strain applied to 

the membrane, which is given by: 

   
       

  
  

  
  
    . (1) 

The nominal, or starting, area of the membrane is represented by   , while the strained 

membrane area is represented by   , where 

       
  . (2) 

       
  . (3) 

The relationship between the radius of the strained circular sample (    necessary to achieve the 

desired prestrain (ε) and the nominal (starting) membrane radius (    is thus calculated as 

              . (4) 
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The membrane radius is defined as the distance from the center of the membrane out to the inner 

face of the clamp head, and the membrane diameter as the distance between opposite clamp head 

faces.  The minimum (    ) and maximum (    ) membrane radii that the apparatus can achieve 

as-built are indicated as 

               . (5) 

               . (6) 

An arbitrary starting membrane radius is indicated by its percentage of the range between      

and     .  For example, a 25% range would be calculated thus: 

                                    . (7) 

Figure 3 shows the minimum radius for the apparatus, whereas in figure 4, the constraint is 

provided by the clearance distance between the back of the clamp head and the inner radius of 

the fixture mounting ring.  This clearance distance is represented by (  ), as shown in Figure 6: 

               . (8) 

      
                . (9) 

      
                    . (10) 

 

Figure 6.  Apparatus top view including slide mount (ring at center) with significant dimensions 

and limits called out. 
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The inner radius of the fixture mounting ring ( ) is 114.3 mm.  The clamp head length (  ) is 

28.58 mm.       
 represents the maximum head travel allowed by the geometric constraints of 

the apparatus, knowledge of which is necessary when setting software operating limits in the 

apparatus interface software.   

When the prestrained sample is to be mounted to a rigid substrate, or “slide mount,” an 

operational constraint also arises from the requirement for some nominal clearance distance (  ) 

between the outer circumference of the slide mount and the inner circumference of the clamp 

head, which is given by: 

             . (11) 

The outer radius of the standard slide mount (  ) is 59.06 mm.  It is important that the front head 

clearance be sufficient in order to fit and bond the mounting slide to the strained membrane 

should removal from the apparatus be required for performing additional tests on the sample. 

The radial head displacement (  ) that is required to yield a desired prestrain is given by 

          . (12) 

The nominal radius of the membrane samples, as measured as one-half the distance between 

opposing clamp heads before strain is applied, determines what the final strain will be for a given 

radial displacement.  It is possible with the apparatus to choose an arbitrary nominal radius 

subject to the constraint               .  Knowing both the nominal and final radii to a high 

degree of confidence is important in order to have confidence in the final applied strain value; 

this confidence follows correct operation of the apparatus.   

The apparatus is operated through computer control of stepper motors.  The stepper motors have 

a gear head that is meshed to the gear track, which itself is a large circular gear.  The stepper 

motor rotates, rotating the gear track, which rotates the spur gear, which causes the threaded rod 

to translate in and out, thus inducing a radial displacement of the clamp head.  The fundamental 

relationship that is of interest to the operator is, therefore, the resulting applied strain ( ) as a 

function of the number of steps that the motor rotates ( ).  Derivation of this fundamental 

relationship follows.  The gear ratio ( ) for the apparatus is a function of the number of gear 

teeth on the stepper motor gear head (     ), the number of teeth on the spur gear (     ), 

the number of holes in the gear track circumference (      ), and the number of teeth around 

the perimeter of the gear track (      ), and is calculated as 

   
    

    
  . (13) 

The screw pitch (linear displacement per revolution of spur gear) is (           ).  The 

number of steps per 360° rotation of the stepper motor is (  ).  Therefore, the radial head 

displacement per motor step (  ) can be calculated as follows:
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  . (14) 

The theoretical head displacement per step for the as-designed apparatus is calculated to be 

0.28964 μm per stepper motor step, assuming microstepping is enabled, yielding 2000 steps per 

motor revolution.  This value is in good agreement with the experimentally measured value for 

the as-built displacement of 0.28997 μm per motor step.  The actual radial head displacement 

(  ) for   steps is then given by 

        . (15) 

Examining equations 1–3 and 11, the following relationship for applied area strain ( ) is revealed: 

   
       

 

  
     . (16) 

This further reduces to 

   
  

  
 
  

  
    . (17) 

The strain envelope of the apparatus is shown in figure 7. 

 

Figure 7.  The relationship between desired area strain values and the number of motor steps required 

to achieve the desired strain is shown for the as-designed apparatus.   

Note:  Achievable values are indicated in the bounded region.  The slope and maximum achievable strain are both 

shown to vary with starting radius.   
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The resolution of the apparatus (  ), as measured in strain per step, is a function of both the 

starting radius and the distance the clamp head has already traveled away from the starting 

radius.  The resolution is, therefore, not a constant for a given starting radius.  The resolution is 

calculated as follows: 

     
   

  

  
 
   

  
    . (19) 

Figure 8 shows the resolution envelope for the apparatus as-built.  The strain resolution per 

stepper motor step is shown to be always better than 0.0034% (34 µstrain) area strain per step, or 

6.8% area strain per revolution of the stepper motor, equivalent to 2000 steps.  For best 

precision, the user should select as large a starting radius as possible so as to achieve the 

maximum resolution. 

 

Figure 8.  The as-built envelope for resolution, assuming microstepping is used.   

Note:  Only resolutions at achievable levels of strain for each starting radius are indicated.  The bounded region thus indicates 

attainable values for the as-built device. 

2.2 Significant Features 

During the iterative development process for this apparatus, we identified a number of 

operational considerations.  The most significant operational considerations and their respective 

solutions are described in the following sections. 
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2.2.1 Shaft Encoders 

Shaft encoders provide a convenient feedback mechanism for closed-loop control of rotary 

positioning devices, such as stepper motors.  Open-loop control of stepper motors is often 

adequate, provided the torque limit of the stepper motor will not be approached or exceeded.  

Should the torque limit be exceeded, even briefly, the commanded step displacements may not 

be executed, which leads to under actuation.  Shaft encoders allow missed step executions to be 

identified and corrected with a closed-loop software implementation.  A secondary shaft encoder 

was deemed desirable for the strain apparatus since stiff specimens, which would have the 

potential to briefly overload the stepper motors, may be considered.  Two encoders placed at 

different operational points in the apparatus drive serve as a diagnostic tool to identify potential 

malfunctions and help isolate their potential cause. 

The primary shaft encoder (figure 9, left) is directly connected to the drive shaft of the stepper 

motor and provides direct feedback for motor rotational displacement.  The secondary shaft 

encoder (figure 9, right) provides direct feedback for spur gear rotational displacement.  The 

secondary shaft encoder was designed to be easily removed in order to service the apparatus or to 

accommodate specific experiments.   

 

Figure 9.  Primary motor encoder (left) and secondary shaft encoder (right) placements. 

The primary shaft encoder outputs (         ) pulses per full revolution.  Thus the strain 

resolution (   ) per primary shaft encoder pulse (     is given as 

      
   
  

   

  
 
      

  
    , (20) 

where 

     
    

     
  . (21) 

The secondary shaft encoder is rotated by motion of the spur gear through a 1:2 increase pulley.  

The secondary shaft encoder outputs (         ) pulses per full revolution.  Thus the strain 

per secondary shaft encoder pulse (     is given as 
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    , (22) 

where 

      
      
  . (23) 

2.2.2 Clamp Design (Jaw Shape and Screw-Down Method) 

The geometry of the clamping mechanism impacts the strain gradient in the immediate vicinity 

of the clamp.  Thus, for high levels of applied strain, the clamp geometry has a significant impact 

on the likelihood of the sample to tear.  To alleviate sample tearing, we designed a specific 

clamping geometry that also provides adequate sample holding capability to avoid slipping.  The 

geometry of the upper clamp was customized, whereas the bottom surface of the clamp was left 

planar.  Figure 10 shows the upper clamp geometry that was customized to alleviate large strain 

gradients and associated tearing of the sample in the vicinity of the clamp head.  

 

 

Figure 10.  Upper clamp geometry (highlighted, left) and clamp head assembly showing clamping and handling 

features (right). 

Figure 10 also shows the entire clamp head assembly.  The upper clamp is lowered onto the 

sample and properly aligned using the handling tab.  The pressure nut is then screwed down until 

an adequate clamping pressure is achieved. 

2.2.3 Antitwist Cover 

Small amounts of friction between the precision nuts and the precision acme rods can lead to the 

clamp heads rotating during increasing or decreasing strain operations if they are not physically 

constrained.  Clamp head rotation is undesirable, as it prevents an accurate strain state from 

being known under quasi-statically and dynamically applied deformations.  To prevent the heads 

from rotating during operation, we implemented a removable antitwist cover.  Slots in the 

antitwist cover guide the handling tabs on the clamp heads and prevent the heads from rotating.  

The cover is shown in figure 11.
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Figure 11.  Antitwist cover with major features labeled. 

The antitwist cover is placed on the apparatus using the alignment tabs and can be easily 

removed for sample removal or experimentation.  The cover is shown in use on the apparatus in 

figure 12. 

 

Figure 12.  Final design embodiment of the apparatus.
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2.2.4 Electrical Interfaces for In Situ Electrical Characterization 

Electrical contact with the sample upper or lower surfaces can be provided independently via 

purpose-built conducting clamp heads.  Insulating plastic clamp head components can be 

swapped out for metallic conductive components, as shown in figure 13.   

 

Figure 13.  Conducting clamp components for electrical 

interface to a specimen. 

The upper and lower clamp jaws can be replaced with conductive components either 

independently or in tandem.  Any number of combinations is possible up to and including 

replacing all 16 plastic clamp heads.  Figure 14 shows two typical configurations: one used for 

making in situ four-wire conductivity measurements (left image) and another for measuring 

change in capacitance with applied area strain for a compliant capacitor (right image).  

 

 

Figure 14.  Two typical configurations for characterizing shift in electrical properties with large biaxial 

strain:  upper clamp jaw configuration for four-wire conductivity measurements (left) and dual 

upper/lower jaw configuration for measurement of capacitance on a hyperelastic compliant 

capacitor (right).
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3. Validation and Performance Assessment 

In order to establish confidence in the as-built device for purposes of publishing data, we 

performed three different experimental characterizations of the device.  First, a laser 

displacement sensor was used to verify that the displacement per motor encoder pulse is in good 

agreement with the designed value.  The designed value of head displacement per motor encoder 

pulse was 1.1585 μm per encoder pulse.  The experimentally determined value for the as-built 

device was 1.1598 μm per encoder pulse.  The same characterization method also revealed a 

head-to-head variability in displacement/pulse of less than 0.1%.  Second, a photographic 

method was used to validate that the theoretically applied strain agrees with the resulting strain 

measured on the circular membrane.  Third, a digital image correlation (DIC) technique was used 

to validate the assumption that the strain is applied uniformly over the membrane area.  

Additional description and details for the results of each method of performance assessment is 

included in the following sections. 

3.1 Validation of Uniform Head Displacement 

A Microtrak LTC-200-100 laser displacement sensor was used to measure variability in 

displacement between each of the 16 heads.  Multiple runs were performed for each head, and 

curves were fit to the data for millimeter displacement vs. number of motor encoder pulses.  

Figure 15 shows a representative curve fit for a single head.  Figure 16 shows the resulting 

variability between each head, measured in terms of percent difference from the average slope. 

 

Figure 15.  Representative data of head displacement curve fitting using the 

laser displacement sensor.
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Figure 16.  Cross-head variability from average displacement slope for each of the 16 heads. 

Average head displacement was experimentally determined to be equal to 0.001159870 mm per 

motor encoder pulse, which translates to 0.00028997-mm displacement per stepper motor step, 

or slightly less than 0.3 μm of head displacement per stepper motor step.  This assumes 2000 

steps per full revolution of the stepper motor, or 0.18° per step, and 500 motor encoder pulses 

per motor revolution.  Cross-head variability in slope was determined to be less than +/–0.1% in 

all cases.  Both results lend a high degree of confidence in the device reliability and repeatability.  

Additional confidence is gained when one considers that the magnitude of the cross-head 

variability measurements was close to the noise floor of the laser displacement sensor used to 

measure head displacement, leading the author to conclude that at least some of the measured 

cross-head variability can be attributed to sensor noise. 

3.2 Photographic Validation of Applied Strain 

In order to validate the assumption that the commanded strain is the same as the actual resultant 

strain on the membrane sample, a photographic method was used.  A geometric pattern was 

drawn onto a membrane sample at zero strain.  The membrane sample was then clamped into the 

apparatus.  A series of images were taken at various commanded strain values.  Strain was 

measured at the center of the sample for each commanded strain value using an image-

processing technique.  The feature pixel centroid location of each of four points (A, B, C, D) 

defining an area on the membrane was recorded in each image, as depicted in figure 17.  
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Figure 17.  Photo measurement grid. 

The area defined by the four points was calculated and compared with the commanded strain 

values, as shown in figure 18.  Error bounds represent worst-case scenarios for calculating 

photo-measured strain values.  Worst-cases occur when far outside (upper bound) or inside 

(lower bound) pixels are selected rather than the center pixel for the centroids of each point in 

the image-processing algorithm.  Figure 18 also includes theoretically maximum upper and 

lower error bounds, which are defined by the worst-case scenarios of pixel selection for feature 

centroid, as depicted in figure 19.   

 

 

Figure 18.  Overlay of photo-measured strain data and predicted strain values vs. number of stepper motor steps.  
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Figure 19.  Zoomed in from figure 17, example of worst-case bounds on pixel 

selection for the centroid of a point (indicated by black dot) in the 

image-processing algorithm. 

 

The results from the photographic measurement technique shown in figure 18 confirm that the 

resultant strain on the membrane agrees well with the commanded strain, within the limits of the 

photographic measurement technique. 

3.3 Validation of Strain Uniformity Using DIC 

DIC was used to verify that uniform strain is being applied to the isotropic membrane sample.  A 

speckle pattern was applied to the membrane sample at zero strain.  A series of images were 

taken of increasing strain values under strongly backlit lighting conditions using a digital camera 

rigidly mounted to a tripod a fixed distance above the membrane plane.  Images were processed 

into black and white using MATLAB.  The software package, VIC-3D (from CorrelatedSolutions), 

was used to process the images and measure the resulting strain field.  A representative sample 

of the processed images with the uniform strain field overlaid can be seen in figure 20.  
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Figure 20.  DIC results showing uniform strain distribution for (from 

top to bottom) 0%, 150%, and 400% area strains. 

 

4. Conclusions 

The design and performance of an apparatus capable of applying large (greater than 625% area 

strain), precisely controlled (better than 0.003% area strain resolution) equi-biaxial strains to thin 

circular membrane samples has been presented.  A high degree of confidence in the reliability 

and repeatability of the as-built apparatus has been gained through rigorous experimental 
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performance assessment.  The apparatus can be used for performing electromechanical 

characterizations of membrane samples or for preparing samples though application of large pre-

strains for further experimentation (e.g., dielectric spectroscopy or scanning electron microscopy 

[SEM] analysis post-strain).  The device concept described in this report can be readily scaled 

either up or down for adaptation to other experimental infrastructure (e.g., equi-biaxial strain 

application inside a SEM chamber).



 20 

5. References 

Jean-Mistral, C.; Sylvestre, A.; Basrour, S.; Chaillout, J.-J.  Dielectric Properties of Polyacrylate 

Thick Films Used in Sensors and Actuators.  Smart Materials and Structures 2010, 19 

(075019), 9. 

Love, A. E. H.  A Treatise on the Mathematical Theory of Elasticity; Cambridge University 

Press:  New York, 1927. 

Rivlin, R. S.; Saunders, D. W.  Large Elastic Deformations of Isotropic Materials VII.  

Experiments on the Deformation of Rubber.  In Collected Papers of R. S. Rivlin Vol. I; 

Barenblatt, G. I., Joseph, D. D., Eds.; Springer-Verlag:  New York, 1997. 

Saint-Venant, A. J. C. B.  Memoire sur la Torsion des Prismes.  Mem. Divers Savants 1855, 14, 

233–560. 

Slipher, G.; Mrozek, R.; Shumaker, J.  Tunable Band-Pass Filters Employing Stretchable 

Electronic Components.  Proceedings of the ASME 2012 Conference on Smart Materials, 

Adaptive Structures and Intelligent Systems, Stone Mountain, GA, 2012. 

Treloar, L. R. G.  Stresses and Birefringence in Rubber Subjected to General Homogeneous 

Strain.  Proc. Phys. Soc. 1948, 60, 135. 

Von Mises, R.  On Saint-Venant’s Principle.  Bulletin AMS 1945, 51, 555–562. 



 

 

NO. OF  

COPIES ORGANIZATION  

 

 21 

 1 DEFENSE TECHNICAL 

 (PDF) INFORMATION CTR 

  DTIC OCA 

 

 1 DIRECTOR 

 (PDF) US ARMY RESEARCH LAB 

  RDRL CIO LL 

 

 1 GOVT PRINTG OFC 

  (PDF)  A MALHOTRA 

 

 1 RDRL VTA 

 (PDF)  G SLIPHER 



 

 22 

INTENTIONALLY LEFT BLANK. 


